126 research outputs found

    XX males SRY negative: a confirmed cause of infertility

    Get PDF
    BACKGROUND: SOX9 is a widely expressed transcription factor playing several relevant functions during development and essential for testes differentiation. It is considered to be the direct target gene of the protein encoded by SRY and its overexpression in an XX murine gonad can lead to male development in the absence of Sry. Recently, a family was reported with a 178 kb duplication in the gene desert region ending about 500 kb upstream of SOX9 in which 46,XY duplicated persons were completely normal and fertile whereas the 46,XX ones were males who came to clinical attention because of infertility. METHODS AND RESULTS: We report a family with two azoospermic brothers, both 46,XX, SRY negative, having a 96 kb triplication 500 kb upstream of SOX9. Both subjects have been analyzed trough oligonucleotide array-CGH and the triplication was confirmed and characterised through qPCR, defining the minimal region of amplification upstream of SOX9 associated with 46,XX infertile males, SRY negative. CONCLUSIONS: Our results confirm that even in absence of SRY, complete male differentiation may occur, possibly driven by overexpression of SOX9 in the gonadal ridge, as a consequence of the amplification of a gene desert region. We hypothesize that this region contains gonadal specific long-range regulation elements whose alteration may impair the normal sex development. Our data show that normal XX males, with alteration in copy number or, possibly, in the critical sequence upstream to SOX9 are a new category of infertility inherited in a dominant way with expression limited to the XX background

    Zebrafish : a resourceful vertebrate model to investigate skeletal disorders

    Get PDF
    Animal models are essential tools for addressing fundamental scientific questions about skeletal diseases and for the development of new therapeutic approaches. Traditionally, mice have been the most common model organism in biomedical research, but their use is hampered by several limitations including complex generation, demanding investigation of early developmental stages, regulatory restrictions on breeding, and high maintenance cost. The zebrafish has been used as an efficient alternative vertebrate model for the study of human skeletal diseases, thanks to its easy genetic manipulation, high fecundity, external fertilization, transparency of rapidly developing embryos, and low maintenance cost. Furthermore, zebrafish share similar skeletal cells and ossification types with mammals. In the last decades, the use of both forward and new reverse genetics techniques has resulted in the generation of many mutant lines carrying skeletal phenotypes associated with human diseases. In addition, transgenic lines expressing fluorescent proteins under bone cell- or pathway- specific promoters enable in vivo imaging of differentiation and signaling at the cellular level. Despite the small size of the zebrafish, many traditional techniques for skeletal phenotyping, such as x-ray and microCT imaging and histological approaches, can be applied using the appropriate equipment and custom protocols. The ability of adult zebrafish to remodel skeletal tissues can be exploited as a unique tool to investigate bone formation and repair. Finally, the permeability of embryos to chemicals dissolved in water, together with the availability of large numbers of small-sized animals makes zebrafish a perfect model for high-throughput bone anabolic drug screening. This review aims to discuss the techniques that make zebrafish a powerful model to investigate the molecular and physiological basis of skeletal disorders

    A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype

    Get PDF
    Mutations in the diastrophic dysplasia sulfate transporter (DTDST or SLC26A2) cause a family of recessively inherited chondrodysplasias including, in order of decreasing severity, achondrogenesis 1B, atelosteogenesis 2, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia. The gene encodes a widely distributed sulfate/chloride antiporter of the cell membrane whose function is crucial for the uptake of inorganic sulfate, which is needed for proteoglycan sulfation. To provide new insights in the pathogenetic mechanisms leading to skeletal and connective tissue dysplasia and to obtain an in vivo model for therapeutic approaches to DTD, we generated a Dtdst knock-in mouse with a partial loss of function of the sulfate transporter. In addition, the intronic neomycine cassette in the mutant allele contributed to the hypomorphic phenotype by inducing abnormal splicing. Homozygous mutant mice were characterized by growth retardation, skeletal dysplasia and joint contractures, thereby recapitulating essential aspects of the DTD phenotype in man. The skeletal phenotype included reduced toluidine blue staining of cartilage, chondrocytes of irregular size, delay in the formation of the secondary ossification center and osteoporosis of long bones. Impaired sulfate uptake was demonstrated in chondrocytes, osteoblasts and fibroblasts. In spite of the generalized nature of the sulfate uptake defect, significant proteoglycan undersulfation was detected only in cartilage. Chondrocyte proliferation and apoptosis studies suggested that reduced proliferation and/or lack of terminal chondrocyte differentiation might contribute to reduced bone growth. The similarity with human DTD makes this mouse strain a useful model to explore pathogenetic and therapeutic aspects of DTDST-related disorder

    N-acetylcysteine treatment ameliorates the skeletal phenotype of a mouse model of diastrophic dysplasia

    Get PDF
    Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in SLC26A2, a cell membrane sulfate-chloride antiporter. Sulfate uptake impairment results in low cytosolic sulfate, leading to cartilage proteoglycan (PG) undersulfation. In this work, we used the dtd mouse model to study the role of N-acetyl-l-cysteine (NAC), a well-known drug with antioxidant properties, as an intracellular sulfate source for macromolecular sulfation. Because of the important pre-natal phase of skeletal development and growth, we administered 30 g/l NAC in the drinking water to pregnant mice to explore a possible transplacental effect on the fetuses. When cartilage PG sulfation was evaluated by high-performance liquid chromatography disaccharide analysis in dtd newborn mice, a marked increase in PG sulfation was observed in newborns from NAC-treated pregnancies when compared with the placebo group. Morphometric studies of the femur, tibia and ilium after skeletal staining with alcian blue and alizarin red indicated a partial rescue of abnormal bone morphology in dtd newborns from treated females, compared with pups from untreated females. The beneficial effect of increased macromolecular sulfation was confirmed by chondrocyte proliferation studies in cryosections of the tibial epiphysis by proliferating cell nuclear antigen immunohistochemistry: the percentage of proliferating cells, significantly reduced in the placebo group, reached normal values in dtd newborns from NAC-treated females. In conclusion, NAC is a useful source of sulfate for macromolecular sulfation in vivo when extracellular sulfate supply is reduced, confirming the potential of therapeutic approaches with thiol compounds to improve skeletal deformity and short stature in human DTD and related disorder

    Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate

    Get PDF
    Osteogenesis imperfecta (OI) types VII, VIII and IX, caused by recessive mutations in cartilage associated protein (CRTAP), prolyl-3-hydroxylase 1 (P3H1), and cyclophilin B (CyPB), respectively, are characterized by the synthesis of overmodified collagen. The genes encode for the components of the endoplasmic reticulum (ER) complex responsible for the 3-hydroxylation of specific proline residues in collagen type I. Our study dissects the effects of mutations in the proteins of the complex on cellular homeostasis, using primary fibroblasts from seven recessive OI patients. In all cell lines the intracellular retention of overmodified type I collagen molecules causes ER enlargement associated to the presence of protein aggregates, activation of the PERK branch of the unfolded protein response and apoptotic death. The administration of 4-phenylbutyrate (4-PBA) alleviates cellular stress by restoring ER cisternae size, normalizing the p-PERK/PERK ratio and the expression of apoptotic marker. The drug has also a stimulatory effect on autophagy. We proved that the rescue of cellular homeostasis following 4-PBA treatment is associated to its chaperone activity, since it increases protein secretion, restoring ER proteostasis and reducing PERK activation and cell survival also in presence of autophagy pharmacological inhibition.Our results provide a novel insight into the mechanism of 4-PBA action and demonstrated that the intracellular stress in recessive OI can be tuned by 4-PBA therapy, similarly to what we recently reported for dominant OI, thus allowing a common target for OI forms characterized by overmodified collagen

    NovelRPL13Variants and Variable Clinical Expressivity in a Human Ribosomopathy With Spondyloepimetaphyseal Dysplasia

    Get PDF
    Spondyloepimetaphyseal dysplasias (SEMDs) are a heterogeneous group of disorders with variable growth failure and skeletal impairments affecting the spine and long bone epiphyses and metaphyses. Here we report on four unrelated families with SEMD in which we identified two monoallelic missense variants and one monoallelic splice site variant inRPL13, encoding the ribosomal protein eL13. In two out of four families, we observed autosomal dominant inheritance with incomplete penetrance and variable clinical expressivity; the phenotypes of the mutation-positive subjects ranged from normal height with or without hip dysplasia to severe SEMD with severe short stature and marked skeletal dysplasia.In vitrostudies on patient-derived dermal fibroblasts harboringRPL13missense mutations demonstrated normal eL13 expression, with proper subcellular localization but reduced colocalization with eL28 (p<0.001). Cellular functional defects in fibroblasts from mutation-positive subjects indicated a significant increase in the ratio of 60S subunits to 80S ribosomes (p= 0.007) and attenuated global translation (p= 0.017). In line with the human phenotype, ourrpl13mutant zebrafish model, generated by CRISPR-Cas9 editing, showed cartilage deformities at embryonic and juvenile stages. These findings extend the genetic spectrum ofRPL13mutations causing this novel human ribosomopathy with variable skeletal features. Our study underscores for the first time incomplete penetrance and broad phenotypic variability in SEMD-RPL13 type and confirms impaired ribosomal function. Furthermore, the newly generatedrpl13mutant zebrafish model corroborates the role of eL13 in skeletogenesis. (c) 2020 The Authors.Journal of Bone and Mineral Researchpublished by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..Peer reviewe

    Zebrafish Tric-b is required for skeletal development and bone cells differentiation

    Get PDF
    IntroductionTrimeric intracellular potassium channels TRIC-A and -B are endoplasmic reticulum (ER) integral membrane proteins, involved in the regulation of calcium release mediated by ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP3Rs) receptors, respectively. While TRIC-A is mainly expressed in excitable cells, TRIC-B is ubiquitously distributed at moderate level. TRIC-B deficiency causes a dysregulation of calcium flux from the ER, which impacts on multiple collagen specific chaperones and modifying enzymatic activity, leading to a rare form of osteogenesis imperfecta (OI Type XIV). The relevance of TRIC-B on cell homeostasis and the molecular mechanism behind the disease are still unknown.ResultsIn this study, we exploited zebrafish to elucidate the role of TRIC-B in skeletal tissue. We demonstrated, for the first time, that tmem38a and tmem38b genes encoding Tric-a and -b, respectively are expressed at early developmental stages in zebrafish, but only the latter has a maternal expression. Two zebrafish mutants for tmem38b were generated by CRISPR/Cas9, one carrying an out of frame mutation introducing a premature stop codon (tmem38b-/-) and one with an in frame deletion that removes the highly conserved KEV domain (tmem38bΔ120-7/Δ120-7). In both models collagen type I is under-modified and partially intracellularly retained in the endoplasmic reticulum, as described in individuals affected by OI type XIV. Tmem38b-/- showed a mild skeletal phenotype at the late larval and juvenile stages of development whereas tmem38bΔ120-7/Δ120-7 bone outcome was limited to a reduced vertebral length at 21 dpf. A caudal fin regeneration study pointed towards impaired activity of osteoblasts and osteoclasts associated with mineralization impairment.DiscussionOur data support the requirement of Tric-b during early development and for bone cell differentiation

    Identification of Potential Non-invasive Biomarkers in Diastrophic Dysplasia

    Get PDF
    Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification

    Osteogenesis Imperfecta: prospects for molecular therapeutics.

    No full text
    Revie
    corecore